Kevin P. Murphy
Christopher M. Bishop
Daphne Koller, Nir Friedman
David J. C. MacKay
Marc MΓ©zard, Andrea Montanari
Nicolas Chopin , Omiros Papaspiliopoulos
Adrian Barbu , Song-Chun Zhu
Tor Lattimore, Csaba SzepesvΓ‘ri
Mykel J. Kochenderfer, Tim A. Wheeler, Kyle H. Wray
Richard S. Sutton, Andrew G. Barto
Mykel J. Kochenderfer, Christopher Amato, Girish Chowdhary, Jonathan P. How, Hayley J. Davison Reynolds
Warren B. Powell
Stefano V. Albrecht, Filippos Christianos, Lukas SchΓ€fer
Daniel Liberzon
Steven L. Brunton, J. Nathan Kutz
James B. Rawlings, David Q. Mayne, Moritz M. Diehl
Carl Edward Rasmussen, Christopher K. I. Williams
JuΕ‘ Kocijan
Thomas Parr, Giovanni Pezzulo, Karl J. Friston
Gilles Barthe, Joost-Pieter Katoen, Alexandra Silva
University of British Columbia, Dr. Frank Wood, 2021
π₯ lectures π bookProf. Csaba SzepesvΓ‘ri, University of Alberta, 2022
π₯ lectures π webpagePrinceton University, Prof. Chi Jin, 2024
π₯ lectures π webpageπ
Reinforcement Learning
π
Approximate Inference Variational Inference
π
Model Predictive Control Gaussian Process
π
Probabilistic Programming
π
Approximate Inference Reinforcement Learning
π
Approximate Inference Probabilistic Programming Monte Carlo
π
Reinforcement Learning Approximate Inference
π
Approximate Inference Probabilistic Programming Variational Inference
π
Approximate Inference Probabilistic Programming Monte Carlo
π
Approximate Inference Variational Inference
π
Approximate Inference Variational Inference
π
Approximate Inference Variational Inference
π
Approximate Inference Variational Inference Particle-Based Inference
π
Approximate Inference Variational Inference Particle-Based Inference
π
Approximate Inference Variational Inference Particle-Based Inference
π
Approximate Inference Variational Inference
π
Approximate Inference Variational Inference
π
Approximate Inference Variational Inference
π
Reinforcement Learning
π
Approximate Inference Variational Inference
π
Approximate Inference Monte Carlo Probabilistic Programming
π
Probabilistic Programming Monte Carlo Approximate Inference
π
Approximate Inference Variational Inference
π
Probabilistic Programming Approximate Inference Belief Propagation
π
Probabilistic Programming Approximate Inference
π
Approximate Inference Variational Inference
π
Probabilistic Programming Approximate Inference
π
Reinforcement Learning Approximate Inference Variational Inference
π
Approximate Inference Monte Carlo
π
Approximate Inference Monte Carlo
π
Approximate Inference Probabilistic Programming
π
Reinforcement Learning
π
Reinforcement Learning Gaussian Process
π
Latent ODE/PDE Differentiable Programming
π
Approximate Inference
π
Gaussian Process
π
Probabilistic Programming
π
Approximate Inference Probabilistic Programming
π
Probabilistic Programming
π
Reinforcement Learning
π
Gaussian Process Reinforcement Learning
π
Reinforcement Learning Gaussian Process
π
Reinforcement Learning
π
Probabilistic Programming Approximate Inference
π
Probabilistic Programming
π
Gaussian Process Reinforcement Learning
π
Reinforcement Learning Energy-Based Models
π
Probabilistic Programming Monte Carlo
π
Gaussian Process
π
Approximate Inference Probabilistic Programming
π
Approximate Inference Particle-Based Inference Variational Inference
π
Probabilistic Programming
π
Gaussian Process
π
Approximate Inference
π
Approximate Inference Variational Inference
π
Approximate Inference Variational Inference Reinforcement Learning
π
Approximate Inference Gaussian Process
π
Gaussian Process Approximate Inference
π
Approximate Inference Expectation Propagation
π
Gaussian Process
π
Reinforcement Learning
π
Gaussian Process Reinforcement Learning
π
Approximate Inference Monte Carlo
π
Approximate Inference Monte Carlo Particle-Based Inference
π
Reinforcement Learning Gaussian Process
π
Approximate Inference Belief Propagation
π
Reinforcement Learning Gaussian Process
π
Approximate Inference Variational Inference Belief Propagation
π
Approximate Inference Belief Propagation
π
Approximate Inference Belief Propagation